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GENERALIZED INVERSION OF MODIFIED MATRICES* 

CARL D. MEYER, JR.t 

Abstract. For an m x n complex matrix A and two columns, c and d, representations for the 
Moore-Penrose inverse of the matrix A + cd* are given for all possible cases. Moreover, each repre- 
sentation involves only A, At, c, d, and their conjugate transposes. 

1. Introduction. For a square, nonsingular matrix A, it is well known 
[2, pp. 173-178] that when A is modified by a matrix of rank 1 to produce M = A 
+ cd*, the inverse of M, if it exists, is given by the formula 

(1.1) M-1 = A` - A- ed*A-', 

where ,B = 1 + d*A-lc. By means of (1.1), one can alter one or more of the 
elements of A and still use A- 1 to invert the modified matrix [1], [3, p. 79], [5]. 
Also, (1.1) is the basis for the inversion schemes known as rank annihilation or 
the reinforcement method [6], [2, pp. 173-178]. However, if one is dealing with 
either a rectangular matrix or a square singular matrix A, as is often the case, 
and he has previously obtained the Moore-Penrose inverse [4] At of A, it is not 
always possible to obtain the Moore-Penrose inverse of the modified matrix 
A + cd* by using (1.1) with (- 1) replaced by (t). Earlier work by Cline [8], 
allowed one to obtain the Moore-Penrose inverse of A + cd* in the special 
cases when Ad*c = 0 or else when c = d and A = SS* for some S. However, the 
general expression for (A + cd*)t has not yet been given. 

In this paper, we present expressions for (A + cd*)t which cover all possible 
cases. Moreover, each of our expressions for (A + cd*)t are of the form 

(A + cd*)t = At + G, 

where G is a matrix obtained from only sums and products of A, At, c, d, and their 
conjugate transposes, so that our expressions may be used to obtain the Moore- 
Penrose inverse of a modified matrix in much the same way (1.1) is used in the 
nonsingular case. 

2. Notation. For a given m x n complex matrix A and two columns c and d, 
we adopt the following notation: 

(-) the complex conjugate, 
* the conjugate transpose, 
t -the Moore-Penrose inverse, 
IL -I the Euclidean norm, 
R()-the range or column space, 
k -the column Atc, 
h -the row d*At, 
u -the column (I -AAt)c, 
v -the row d*(I - AtA), 
B -the scalar 1 + d*Atc. 

* Received by the editors March 6, 1972, and in revised form July 14, 1972. 
t Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607. 
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316 CARL D. MEYER, JR. 

Throughout, we make use of the fact that for a nonzero vector x, its Moore- 
Penrose inverse is given by 

x* 
_t = 

X = llxll2 

3. Main results. In order to investigate the structure of the matrix (A + cd*)t, 
there are six distinct cases to consider and we enumerate them as follows: 

(i) c 0 R(A) and d 0 R(A*); 
(ii) c e R(A) and d R(A*) andf, = 0; 
(iii) c e R(A) and d arbitrary and ,B # 0; 
(iv) c R(A) and deR(A*) and /=0; 
(v) c arbitrary and d e R(A*) and ,B # 0; 
(vi) c e R(A) and d e R(A*) and /B = 0. 
THEOREM 1. 

(3.1) (A + cd*)t = At - kut - vth + f3vtut, 

when c 0 R(A) and d 0 R(A*). 
THEOREM 2. 

(3.2) (A + cd*)t = At - kktAt - vth, 

when c e R(A), d 0 R(A*) and ,B = 0. 
THEOREM 3. Let 

P ilk 1112 * , I= v112 
Pi =- V v*-k, ql k*At-h, 

and 

a,= Ilk11211VII2 + 1312. 
Then, 

(3.3) (A + cd*)t - At + pv*k*At plql, 
/3~ ~ a 

when c e R(A) and /3 # 0. 
THEOREM 4. 

(3.4) (A + cd*)t = At -Athth - kut, 

when c R(A), deR(A*) and/, = 0. 
THEOREM 5. Let 

P2 1u112 11h 112 U P2 =- Ath* -k, q2 - h 

and 

2= 1lh 11211u112 + 1312. 
Then, 

(3.5) (A + cd*)t - At + -Ath*u* - _P2q*2 

when deR(A*)and/3 0. 
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MODIFIED MATRICES 317 

THEOREM 6. 

(3.6) (A + cd*)t = At - kktAt - Athth + (ktAtht)kh, 

when c E R(A), d E R(A*) and / = 0. 
Before proving the theorems, two preliminary facts are needed, and we state 

these as lemmas. 
LEMMA 1. 

rank (A + cd*) = rank [ -1. 

Proof. This follows immediately from the factorization 

A + cd* c I ][A u$I k I 0 

L I _1 h 1 lv -0jl I d* 1 _j 

It is worth noting that c E R(A) if and only if u = 0 and d E R(A*) if and only if 
v = 0. 

LEMMA 2. If M and X are matrices such that XMMt = X and MtM = XM, 
then X = Mt. 

Proof. 
Mt = (MtM)Mt = XMMt = X. 

We now proceed with the proof of the theorems. Throughout, we assume 
c = 0 and d # 0. 

Proof of Theorem 1. Let X1 denote the right-hand side of (3.1) and let M = A 
+cd*. The proof is showing that X1 satisfies the four Penrose conditions: (1) 
MX1M = M, (2) XjMX1 = X1, (3) (MX1)* = MX1, and (4) (X1M)* = XjM. 
Using Avt = 0, d*vt = 1, d*k = B - 1, and c - Ak = u, it is easy to see that 

MX1 = AAt + uut 

so that (3) holds. Using utA = 0, utc = 1, hc = /3-1, and d* - hA = v, one 
obtains 

X1M = AtA + vfv 

and hence (4) holds. Conditions (1) and (2) are now easily verified. 
Proof of Theorem 2. Let X2 denote the right-hand side of (3.2). By using 

Ak = c, Avt = 0, d*vt = 1, and d*k = -1 it is seen that 

(A + cd*)X2 = AAt, 

which is Hermitian. From the facts that ktAtA = kt, hc =-1, and d* - hA = v, 
it follows that 

X2(A + cd*) = AtA - kkt + vtv, 

which is also Hermitian. The first and second Penrose conditions are now easily 
verified. 

Proof of Theorem 3. This case is the most difficult. In this case, c E R(A) and 
hence it follows that R(A + cd*) c R(A) and u = 0. Since ,B # 0, it is clear from 
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Lemma 1 that 

rank (A + cd*) = rank (A) 

so that R(A + cd*) = R(A) and therefore 

(3.7) (A + cd*)(A + cd*)t = AAt 

because AAt is the unique orthogonal projector onto R(A). (For a discussion of 
projectors, see [7, p. 106].) Let X3 denote the right-hand side of (3.3). Because 
q*AAt = ql*, it is immediate from (3.7) that 

X3(A + cd*)(A + cd*)t = X3 

and hence the first condition of Lemma 2 is satisfied. 
To show that the second condition of Lemma 2 is also satisfied, we first 

show that 

(A + cd*)t(A + cd*) = AtA - kkt + PiP'. 

The matrix AtA - kkt + PiPt is Hermitian and idempotent. The fact that it is 
Hermitian is clear and the fact that it is idempotent follows by direct computation 
using AtAk = k, AtAp1 = - k, and kktp = - k. Since the rank of an idempotent 
matrix is equal to its trace ([9, p. 224]) and since trace is a linear function, it follows 
that 

rank (AtA - kkt + PiPt) = trace (AtA - kkt + PiPt) 

- trace (AtA) - trace (kkt) + trace (p1pt). 

Now, kkt and PiPt are idempotent matrices of rank = trace = 1 and AtA is an 
idempotent matrix whose rank is equal to rank (A), so that 

(3.8) rank (AtA - kkt + PtPI) = rank (A + cd*). 

Using the facts Ak = c, Ap1 = -c, d*k = /-1, d*pl = 1 - l-', and d*AtA 
d* - v, one obtains 

(A + cd*)(AtA - kkt + PtPI) = A + cd* -c(v + fkt + cli-lpt). 
Now, IIp, 112 = llkll2'1llfl -2, so that 1P- 1 Ilp -2 = f3llkll -2 and hence 

'i-flpt + f,IIkIK-2p* = -v - flkt. 

Thus, 

(A + cd*)(AtA - kkt + PiPt) = A + cd*. 

Because AtA - kkt + PiPt is an orthogonal projector, it follows that 

R(A* + dc*) c R(AtA - kkt + plpt) 

By virtue of (3.8), we conclude that 

R(A* + dc*) = R(AtA - kkt + plpt), 

and hence, (A* + dc*)(A* + dc*)t = AtA - kkt + PiPtI or equivalently, 

(A + cd*)t(A + cd*) = AtA - kkt + pipt. 
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MODIFIED MATRICES 319 

To show that X3(A + cd*) = AtA + plpl - kkt, we compute X3(A + cd*) 
afterobservingthatk*AtA - k*, q*c = 1-- a131, andq*A + d* =-11vl12f-lk* 
+ v. Now, 

X3(A + cd*) = AtA + iv*k*- 1p1q*A + (k + v* d* plqcd* 

= AtA + i v*k*- p1q'*A - pid*- pid* + pid* 

= AtA + iv*k*- -pl(ql*A + d*) /3 

= AtA + =v*k*- pi (v - I 'Iv2flk*). 

Write v as v =-PIlkl - 2(p* + k*) and substitute this in the expression in paren- 
theses and use the fact that lip1 I- 2 = 1fl12aL 1 IlkIl -2 to obtain 

1 
X3(A + cd*) = AtA + gSv*k* + PiPt + V 

Since 

/v* + II k l12 P1 = jv* -- - k 112k =1 k 112 k, 

we arrive at 

X3(A + cd*) = AtA + plpf - kkt. 

Thus 

(A + cd*)t(A + cd*) = X3(A + cd*) 

so that X3 = (A + cd*)t, from Lemma 2. 
Proof of Theorem 4. This case is the dual of Theorem 2 in the sense that it 

follows by considering conjugate transposes and using the fact that Mt* = M*t 
for every matrix M. From Theorem 2, 

(A* + dc*)t = A*t - h*h*tA*t - u*tk* 

and hence, 

(A + cd*)t = (A + cd*)*-* = (A*t - h*h*tA*t - u*tk*)* = At - Athth - kut. 

Proof of Theorem 5. This case is the dual of Theorem 3 in the sense that it 
follows from Theorem 3 by considering the conjugate transpose of A + cd* in a 
manner similar to that used in the proof of Theorem 4. 

Proof of Theorem 6. Each of the matrices 

AAt - hth and AtA - kkt 

is an orthogonal projector. The fact that they are idempotent follows from 
AAtht = ht, hAAt = h, AtAk = k and ktAtA = kt. It is clear that each is 
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Hermitian. Moreover, the rank of each is equal to its trace and hence each has 
rank equal to rank (A) - 1. Also, since u = 0, v = 0, and ,B = 0, it follows from 
Lemma 1 that 

rank (A + cd*) = rank (A) - 1. 

Hence, 

(3.9) rank (A + cd*) = rank (AAt - hth) = rank (AAt - ktk). 

With the facts AAtc = c, hc =- 1, and hA = d*, it is easy to see that 

(AAt - hth)(A + cd*) = (A + cd*), 

so that R(A + cd*) c R(AAt - hth). Likewise, using d*AtA = d*, d*k =-1, 
and Ak = c, one sees that 

(A + cd*)(AtA - kkt) = A + cd*, 

and hence R(A* + dc*) c R(AtA - kkt). By virtue of (3.9), it now follows that 

(3.10) (A + cd*)(A + cd*)t - AAt - hth 

and 

(3.11) (A + cd*)t(A + cd*) = AtA - kkt. 

If X6 denotes the right-hand side of (3.6), use (3.10) and the fact that hAAt = h 
to obtain 

X6(A + cd*)(A + cd*)t = X6, 

which is the first condition of Lemma 2. Use ktAtA = kl, hA = d*, and hc =-1 
to obtain 

X6(A + cd*) = AtA - kkt. 

By virtue of (3.11), we have that the second condition of Lemma 2 is satisfied and 
hence X6 = (A + cd*)t. 

COROLLARY (The analogue of (1.1)). When c E R(A), d E R(A*), and ,B # 0, the 
Moore-Penrose inverse of A + cd* is given by 

(A + cd*)t = At- Atcd*At = At- kh. 

Proof. This is obtained from Theorem 3 by setting v = 0 or from Theorem 5 
by setting u = 0. 

4. Special cases. In many applications, particularly in statistical applications, 
one deals not so much with the Moore-Penrose inverse, but rather with a non- 
unique generalized inverse which satisfies only the first Penrose condition: 
i.e., for a given matrix A, A- is called a generalized inverse (g-inverse) for A if 
AA-A = A. It is well known [7, p. 40] that if 1 + d*A-c = ,B # 0 for some A- 
and either c E R(A) or d E R(A*), then a g-inverse for A + cd* is given by 

(A + cd*)- = A - -'lA-cd*A- (the analogue of (1.1)). 
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However, expressions for g-inverses of A + cd* in the other cases have never 
been given. It is not difficult to examine each of the expressions for (A + cd*)t 
given earlier and decide which terms of each expression can be omitted and 
which should be kept, so that just the first Penrose condition is satisfied. We 
state these observations below. 

THEOREM 7. Let A be an m x n complex matrix and let c and d be m x 1 and 
n x 1 columns, respectively. Let A - be some g-inverse for A; let E and F denote 
matrices 

E = I-AA- and F = I-A-A; 

and let /3 = 1 + d*A - c. A g-inverse for A + cd* is given by the following: 

(A + cd*)- = A- - A-cc*E Fdd*A- Fdc*E 
c*Ec - d*Fd + /(c*Ec)(d*Fd)' 

when c 0 R(A), d q R(A*); 

(A + cd*)- = A- - Fdd*A, 
(A+cd*<~A~d*Fd 

when /3=0, c e R(A), d q R(A*); 

(A + cd*)- = A- --'A-cd*A-, 

when #0 = O and either ceR(A) or deR(A*); 

(A + cd*)- = A - A-cc*E 
c *Ec 

when /3=0, c 0 R(A), d E R(A*); 

(A + cd*) - = A-, when ,B = 0, c E R(A), d E R(A*). 

Proof. Each case may be verified by direct computation. 
5. The order of computations. In order to indicate how the results of ? 3 may 

be used in the computation of the Moore-Penrose inverse of a modified matrix, 
some general comments on computations and the following simple example are 
provided. Let 

1 2 0 1 

A= 0 1 -1 0 

O 0 1 -l- 

and assume At has been previously calculated as 

3 -3 0 

At = 112 I 
S3 -7 -8A 

Suppose -1 is added to the (3.3)-entry of A in order to produce the modified 
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matrix A = A + cd*, where 

c = O and d* = [O, O,-1, O]. 

In general, to compute t, one must first determine which of the six cases 
to use. Begin by computing k and h. This is always easy whenever A arises by 
modifying a single element of A, because if x is added to the (i,j)th entry of A to 
produce A then k may be taken as the ith column of At and h as just x times the 
jth row of At. / is then easily computed as 

3=1+d*k oras 3=1+hc. 

In our example, ,B-2/3. 
In general, the next step is to compute u and v as 

u = c - Ak and v = d*- hA. 

It is well known that c E R(A) if and only if u = 0, and d E R(A*) if and only if 
v = 0. (Nowhere do the matrix products AAt or AtA need to be explicitly com- 
puted.) 

In our example, 

u=0 and v= 1[3,-1,-1,-11, 

so that Theorem 3 must be used to compute t. 
The terms appearing in Theorem 3 are now easily computed and are as 

follows: 

Pi q= --1[-2,5, -2], 

24[ 0 3 6- 

/ v*k*At ] 
240 -1 -2_ 

and 

2 -2 2- 

2 1 2 
At= (A + cd*)t =,- 

6 2 5 2 
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